A compatibly differenced total energy conserving form of SPH

نویسنده

  • J. Michael Owen
چکیده

We describe a modified form of Smoothed Particle Hydrodynamics (SPH) in which the specific thermal energy equation is based on a compatibly differenced formalism, guaranteeing exact conservation of the total energy. We compare the errors and convergence rates of the standard and compatible SPH formalisms on analytic test problems involving shocks. We find that the new compatible formalism reliably achieves the expected first-order convergence in such tests, and in all cases improves the accuracy of the numerical solution over the standard formalism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An energy-conserving formalism for adaptive gravitational force softening in SPH and N−body codes

In this paper we describe an adaptive softening length formalism for collisionless N−body and self-gravitating Smoothed Particle Hydrodynamics (SPH) calculations which conserves momentum and energy exactly. This means that spatially variable softening lengths can be used in N−body calculations without secular increases in energy. The formalism requires the calculation of a small additional term...

متن کامل

The energy conserving particle-in-cell method

A new Particle-in-Cell (PIC) method, that conserves energy exactly, is presented. The particle equations of motion and the Maxwell’s equations are differenced implicitly in time by the midpoint rule and solved concurrently by a Jacobian-free Newton Krylov (JFNK) solver. Several tests show that the finite grid instability is eliminated in energy conserving PIC simulations, and the method correct...

متن کامل

The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy

The principal goal of all numerical algorithms is to represent as faithfully and accurately as possible the underlying continuum equations to which a numerical solution is sought. However, in the transformation of the equations of fluid dynamics into discretized form important physical properties are either lost, or obeyed only to an approximation that often becomes worse with time. This is bec...

متن کامل

Simulation of static sinusoidal wave in deep water environment with complex boundary conditions using proposed SPH method

The study of wave and its propagation on the water surface is among significant phenomena in designing quay, marine and water structures. Therefore, in order to design structures which are exposed to direct wave forces, it is necessary to study and simulate water surface height and the wave forces on the structures body in different boundary conditions. In this study, the propagation of static ...

متن کامل

Turbulent Velocity Fields in SPH–simulated Galaxy Clusters: Scaling Laws for the Turbulent Energy

We present a study of the turbulent velocity fields in the Intra Cluster Medium of a sample of 21 galaxy clusters simulated by the SPH–code Gadget2, using a new numerical scheme where the artificial viscosity is suppressed outside shocks. The turbulent motions in the ICM of our simulated clusters are detected with a novel method devised to better disentangle laminar bulk motions from chaotic on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007